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Abstract Pipecolic acid is an important precursor of
many useful microbial secondary metabolites. Pipecolic
acid-derived moieties are often crucial for the biological
activities of some microbial natural products with
pharmaceutical applications. Understanding the bio-
genesis of pipecolic acid in microorganisms would be a
significant step toward the mutasynthesis of novel ana-
logs of choice. This review focuses on various microbial
pathways and enzymes for pipecolic acid synthesis,
especially those related to the origination of pipecolic
acid moieties in secondary metabolites.
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Introduction

L-Pipecolic acid is a non-proteingenic amino acid widely
distributed in plants, animals, and microorganisms. It is
an important precursor of many useful microbial sec-
ondary metabolites, such as the immunosuppressant
rapamycin, the antitumor agent swainsonine, the pep-
tide antibiotic virginiamycin, and the anthelmintic agent
marcfortine (Fig. 1). In fact, the pipecolic acid-derived
moieties often play important roles in the biological
activities of some pharmaceutically important com-
pounds. Elucidation of the origination of pipecolic acid
thus serves as the first step toward generating novel
analogs of these compounds for the structure-activity
relationship studies.

Biosynthesis of pipecolic acid has been extensively
investigated in animals and plants, mainly because of its
close relationship with lysine metabolism and certain
disorders related to lysine metabolism [1, 2]. These
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studies have established two basic routes for converting
lysine into pipecolic acid, distinguishable at the loss of a
specific amino group of lysine. One route is through the
loss of the az-amino group of lysine and the incorpora-
tion of the e-nitrogen into pipecolic acid (shown in the
left branch of Fig. 2). The alternative route is via the loss
of e-nitrogen and the incorporation of a-nitrogen into
pipecolic acid (shown in the right branch of Fig. 2). The
important intermediates in these two pathways, 4'-pip-
erideine-2-carboxylic acid (P2C) and A'-piperideine-6-
carboxylic acid (P6C), are isomers and exist in chemical
equilibrium with their respective open-chain hydrated
forms, a-keto-ge-amino-caproic acid and o-aminoadipic-
o-semialdehyde [2]. Although both routes have been
reported to account for the biogenesis of pipecolic acid
in microorganisms, variations of certain conversion
steps and penultimate origin other than lysine have also
been observed, as reviewed here. Experimental evidences
supporting the existence of these various routes in
microorganisms, as well as specific enzymes involved in
some catalytic steps will also be discussed.

P2C pathway

The P2C route (reactions 1 and 2 in Fig. 2) for pipecolic
acid synthesis has been studied in detail in Pseudomonas
putida as a part of p-lysine catabolic pathway. Pseudo-
monas strains use different routes to metabolize L-lysine
and p-lysine for carbon and nitrogen sources [3-5].
Whereas L-lysine is degraded primarily through the §-
aminovalerate pathway [5], D-lysine is metabolized
through the transamination of the a-amino group of
lysine, resulting in the formation of P2C, which is re-
duced into pipecolic acid [4, 6]. The latter is ultimately
metabolized into glutamate. One of the most important
experiments to elucidate this route was the identification
of the enzyme catalyzing the reduction of P2C into
pipecolic acid (reaction 2 in Fig. 2). In the 1980s, Payton
and Chang [7] reported the purification and initial
characterization of a reductase possessing such activity
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Fig. 1 Microbial secondary
metabolites containing
pipecolic acid derived moieties
(pipecolate moieties are shown
in bold-faced type in the
drawing)
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from P. putida ATCC 15070. At that time, information
on the protein sequence or the gene encoding this en-
zyme was not provided. Almost 20 years later, Mura-
matsu et al. [8] surprisingly found that the product of a
P. putida ATCC12633 gene, dpkA, which had previously
been annotated as a malate/i-lactate dehydrogenase,
was actually an NADPH-dependent P2C reductase.
DpkA irreversibly catalyzed the NADPH-dependent
reduction of P2C to form L-pipecolic acid, as well as the
reduction of A'-pyrroline-2-carxoylate into L-proline.
The dual functions of this enzyme have been unambig-
uously demonstrated by in vivo genetic knockout
experiment and in vitro biochemical assay using purified
enzyme [8]. Sequence analysis has revealed that this
enzyme represents a novel subclass in an NAD (P)-
dependent oxidoreductase superfamily, with close ho-
mologs also found in P. syringae and P. aeruginosa [8].

The specific enzyme for conversion of p-lysine to P2C
(reaction 1 in Fig. 2) has not been reported in Pseudo-
monas, although the p-amino acid aminotransferase
from Bacillus sphaericus has been demonstrated to be
capable of catalyzing the o-transamination of p-lysine
with pyruvate to yield P2C [9]. A L-lysine o-oxidase
catalyzing the oxidative deamination of the x-amino
group of L-lysine has been isolated from fungi Tricho-
derma viride Y244-2 [10] and T. harzianum Rifai [11].
The enzyme has been characterized as a flavoprotein
with two identical subunits, each containing one mole-
cule of FAD as the coenzyme. It exhibits a high ste-
reospecificity, being absolutely inert toward p-lysine. In
the reactions catalyzed by this enzyme, the a-amino
group of L-lysine is oxidized to yield a-keto-g-amino-

Rapamycin Slaframine Swainsonine

CH3

Virginiamycin S

caproic acid, which is spontaneously converted into the
dehydrated cyclic form, P2C [10, 11]:

L - lysine + O, — NH; + H,O, +

o - keto - ¢ - amino - caproic acid = P2C

It is noteworthy that a L-lysine 2-aminotransferase
(L2AT) has also been reported to catalyze the a-trans-
amination reaction of rL-lysine in Streptomyces tendae
Tu901, an actinomycete strain which produces peptidyl
nucleoside antibiotic nikkomycin D [12]. Nikkomycin D
does not contain any pipecolate moiety, but has a pi-
colinic acid moiety which is also derived from L-lysine
through loss of a-amine [13]. In the biosynthetic gene
cluster of nikkomycin D, a gene has been identified to
encode a protein (NikC), which belongs to a novel class
of pyridoxamine or pyridoxal-phosphate-dependent de-
hydrases and aminotransferases. The function of NikC
as L-lysine 2-aminotransferase has been clearly demon-
strated by the o-aminobezaldehyde assay, which allows
differentiation between the a-transamination and
e-transamination of lysine [12].

Lysine cyclodeamination pathway

This route (reaction 3 in Fig. 2) arose from the studies of
the biosynthesis of rapamycin, FK506 and FK520 (as-
comycin), a group of closely related actinomycete sec-
ondary metabolites with potent immunosuppressive,
neurotrophic, and antifungal activities [14, 15]. A com-
mon structural feature of these heterocyclic polyketide
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Fig. 2 Various routes of pipecolic acid biosynthesis in microorganisms

compounds is a so-called “FKBP12-binding motif™,
which is composed of a pipecolate ester and a cyclic
hemiketal moiety [16]. This structural motif is believed to
be indispensable for the biological activities of these
compounds, because it is involved in the binding of their
initial in vivo target, FKBP12 [17-19]. Labeling experi-
ments using DL-lysine-x-'°N and pr-lysine--'°N clearly
indicated the loss of a-nitrogen atom and the incorpo-
ration of e-nitrogen into the final FK 520 macrolide ring
[20]. Later, a gene (rapL) encoding a putative enzyme
called lysine cyclodeaminase has been identified in the
completely sequenced biosynthetic gene cluster of rapa-
mycin [21, 22]. The deduced protein product (RapL) of
rapL gene exhibits strong sequence similarity with two
isoenzymes of ornithine deaminase from Agrobacterium
tumefaciens, which catalyze the deaminative cyclization
of ornithine to proline [23, 24]. Based on this homology,
Molnar et al. [21] proposed that RapL catalyzes the
analogous conversion of L-lysine to L-pipecolic acid.
Khaw et al. [25] have confirmed the involvement of rapL
in the biosynthesis of rapamycin by genetic disruption of
this gene in Streptomyces hygroscopicus NRRL 5491,
which resulted in significant decrease in rapamycin pro-
duction and allowed the replacement of pipecolate with

proline to generate prolyrapamycin. Close homologs of
rapL gene have also been found in the biosynthetic gene
clusters of FK506 [26] and FKS520 [27], indicating a
common route for supplying pipecolate in the biosyn-
thesis of these related compounds. Since ornithine
deaminase catalyzes the cyclization of ornithine to pro-
line via the loss of a-amino group of ornithine [28], it is
likely that RapL and its homologs function accordingly
on lysine, a mechanism consistent with the results from
earlier labeling experiment with FK520 [20]. However,
the precise enzymatic reactions catalyzed by RapL or its
homologs need to be established by future in vitro bio-
chemical characterization using expressed and purified
protein. It would also be interesting to investigate whe-
ther P2C is generated as an intermediate in the reactions
catalyzed by RapL.

Interestingly, both L-lysine 2-aminotransferase and
lysine cyclodeaminase have been implicated in the bio-
synthesis of virginiamycin S in Streptomyces virginiae
[29]. Virginiamycin S, a cyclohexadepsipeptide antibi-
otic, has two unusual amino acid residues, 4-oxopipe-
colic acid, and 3-hydroxypicolinic acid [30, 31]. Both
amino acids are originally derived from lysine [32], and
the first steps in the biogenesis of these two amino acids
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Fig. 3 Relationship of pipecolic
acid formation and the
biosynthesis of lysine and
penicillin in P. chrysogenum
(modified from reference 54)
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are presumably the same: cyclization of L-lysine with
loss of a-nitrogen [33]. Two genes that have been iden-
tified in the virginiamycin biosynthetic gene cluster
could be responsible for this reaction: visC encoding a
cyclodeaminase similar to RapL, and vis4 encoding a
L-lysine 2-maminotransferase with high homology to
NikC [29]. Namwat et al. [34] provided convincing evi-
dence to suggest that the L2AT activity encoded by vis4
is dedicated to supplying 3-hydroxypicolinic acid from
lysine. Therefore, pipecolic acid, the precursor of
4-oxopipecolic acid, is likely to be generated by the
cyclodeaminase encoded by visC.

P6C pathway

This pathway has been intensively studied in fungi para-
site Rhizoctonia leguminicola, because the synthesis of
pipecolic acid via this route represents the initial steps in
the production of two toxic octahydroindolzine alkaloids,
slaframine, and swainsonine [35]. In the investigation of
the origin of pipecolic acid in this fungus using cell-free
enzyme systems, Wickwire et al. [36, 37] have established a
chain of reactions through which L-lysine was converted
to saccharopine, which was in turn converted to P6C
through oxidative cleavage. The latter was then readily
reduced to pipecolic acid (reactions 4, 5, and 6 in Fig. 2).
A previously unrecognized flavin enzyme, saccharopine
oxidase, has been identified in their study, which oxida-
tively cleaves saccharopine to yield P6C as follows:

Saccharopine + O, — P6C + glutamate + H,0O;

a-Ketoglutarate + Acetyl-CoA

l
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Since saccharopine is a major metabolite in lysine
degradation in R. leguminicola, saccharopine oxidase
apparently functions to shunt saccharopine into second-
ary metabolism pathway to supply precursor (pipecolic
acid) for slaframine and swainsonine production [37]. It is
interesting that in aerobic red yeast R. glutinis, the reverse
reactions of this pathway are operative too, through
which pipecolic acid is converted to lysine via P6C,
a-aminoadipic semialdehyde, and saccharopine [38, 39].

The direct formation of P6C from lysine through e-
transamination has also been observed in some micro-
organisms. In f-lactam producing actinomycetes, P6C is
synthesized from lysine by L-lysine e-aminotransferase
(LAT, E.C.2.6.1.36), and then converted into rL-a-ami-
noadipic acid, the common precursor of all penicillins,
cephalosporins, and cephamycins [40]. Gene encoding
LAT is located in the f-lactam antibiotic biosynthetic
gene clusters in both S. clavuligerus and N. lactamdurans
[41, 42], but is absent from the genome of other non-p-
lactam producing actinomycetes, indicating that LAT is
specific for secondary metabolism [43]. LAT has also
been found in gram-negative bacterium Flavobacterium
lutescens [44, 45]. At the present time, no example can be
given to show the direct involvement of LAT in pipecolic
acid biosynthesis in a naturally occurring microorgan-
ism; however, lat gene has been used to engineer re-
combinant E. coli strains for pipecolic acid production
(see below).

Not much information about the enzyme dedicated
to the second step of P6C pathway, the reduction of P6C
into pipecolic acid, is available at current stage. In their



search for this enzyme in F. lutescens, Fujii et al. [46]
serendipitously found that E. coli pyrroline-5-carboxyl-
ate (P5C) reductase (EC 1.5.1.2) (encoded by proC gene)
acted efficiently with F. lutesens LAT to convert L-lysine
into L-pipecolic acid. They have then genetically engi-
neered a recombinant E. coli strain for massive L-pip-
ecolic acid production through combined expression of
the lat gene from F. lutescens and the proC gene from E.
coli [46, 47]. This biotransformation system provided the
pure S enantiomer of pipecolic acid (L-pipecolic acid),
with ee-value (enantiomeric excess, a measure for how
much of one enantiomer is present compared to the
other) was 100%. It is noteworthy that P5C reductase is
present in almost all organisms, catalyzing the terminal
step in proline biosynthesis—conversion of A'-pyrroline-
5-carboxylate into proline [48—51]. It is possible that in
the microorganisms that produce L-pipecolic acid via
P6C pathway, the universally conserved P5C reductase
is actually responsible, at least in part, for the reduction
of P6C into L-pipecolic acid [46].

o-Aminoadipic acid pathway

In some filamentous fungi, it appeared that pipecolic
acid is derived from a-aminoadipic acid (a-AAA). The
first indication of this route came from Aspen and
Meister’s [52] observation that some lysine auxotroph
mutants of Aspergillus nidulans can convert o-amino-
adipic acid into pipecolic acid. In their experiments using
radio labeled a-AAA and lysine, the carbon skeleton and
the nitrogen atom of pipecolic acid were found to be
predominantly derived from that of a-AAA rather than
that of lysine. This observation prompted Naranjo et al.
to investigate the pipecolic acid synthesis in Penicillium
chrysogenum since this fungus has a very active lysine
biosynthesis pathway to provide a-AAA for penicillin
production [53]. In their initial study, pipecolic acid was
found to be associated with lysine biosynthesis via a
chain of reactions catalyzed by pipecolate oxidase, sac-
charopine reductase, and saccharopine dehydrogenase
[54] (Fig. 3). Later on, this group observed the accu-
mulation of pipecolic acid (along with P6C) upon inac-
tivation of the gene encoding saccharopine reductase,
and its origin was determined to be from a-AAA instead
of lysine through comparison of the intracellular accu-
mulation of pipecolic acid with another mutant which
lacks «-AAA reductase [55]. Here, pipecolic acid
appeared to be an incidental intermediate in lysine bio-
synthesis, derived from the spontaneous chemical equi-
librium of a-AAA-semialdehyde into P6C, and the easy
conversion of P6C to pipecolic acid (probably catalyzed
by the universally existing P5C reductase). In addition,
P. chrysogenum does not naturally produce any sec-
ondary metabolite containing pipecolic acid-derived
moiety. However, the discovery of this a-aminoadipic
acid pathway was an evidence to show that this fungus
could be genetic engineered as a host for producing
pipecolic acid-containing complex secondary metabo-
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lites because of its potential capability to provide pip-
ecolic acid [54].

Concluding remarks

Pipecolic acid is an important non-proteingenic amino
acid that serves as a component or precursor of many
microbial and plant secondary metabolites. Studies
reviewed herein illustrated the multiple routes that
could lead to the production of this amino acid in
different microorganisms. Whereas some microorgan-
isms have dedicated pathways to supply pipecolic acid
for the biosynthesis of specific secondary metabolites,
others might just accumulate this amino acid as an
intermediate or shunt product from a primary meta-
bolic pathway. Information available at current stage
only provided an incomplete picture of each route,
either lacking the identification of the enzyme
responsible for a specific reaction step, or requiring
more experimental evidences to establish the function
of an identified enzyme in a native pipecolic producing
microorganism. In terms of identifying the specific
biogenesis route for the pipecolate moiety of microbial
secondary metabolites, feeding experiment using '°N-
labled lysine was a powerful tool to differentiate the
two plausible routes in converting L-lysine to pipecolic
acid. However, a specific pipecolic acid biosynthetic
route cannot be readily assigned to a strain solely
based on the identification of the loss of the a-amino
or f-amino group of lysine. For example, even though
it has been demonstrated clearly by NMR and MS
studies that the marcfortine A producing Penicillium
strain incorporates L-lysine by losing the a-amino
group to generate pipecolate moiety [56], it is not clear
at the present time that whether a L-lysine o-oxidase
or a lysine 2-aminotransferase along with a P2C
reductase, or a lysine cyclodeaminase alone, is
responsible for the synthesis of pipecolic acid in this
strain. Complete sequencing of the biosynthetic gene
cluster of microbial secondary metabolites will allow
the identification of pathway-dedicated gene(s), if they
exist, for pipecolic acid supply, and therefore provide
the starting point for mutasynthesis of novel analogs
with the pipecolate moiety being replaced by other
amino acids.
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